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Abstract: This study is performed to develop spectral hazard map for Indonesia with a Return 
Period of 2500 years earthquake. It will be proposed for revision of the Indonesian hazard map in 
SNI-03-1726-2002 as response to the meeting organized by the Department of Public Works on 
27- October-2008 in Jakarta. The meeting has decided to revise the Indonesia hazard map by 
referring to IBC-2006 where spectral acceleration values at Peak Ground Acceleration/PGA, 0.2 
and 1.0 second with a return period of 2500 year will be applied for general buildings. The 
spectral hazard map was analyzed using total probability method and three dimensional (3-D) 
source models with recent seismotectonic parameters. Four source models were used in this 
analysis, namely: shallow background, deep background, fault, and subduction source models. 
Generally, the results of analysis show the values of PGA with a return period of 2500 years 
relatively higher 1.2-3.0 times than in SNI-03-1726-2002. 
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Introduction   
 
Currently, Indonesia has three earthquake hazard 
maps issued by the Department of Public Works. 
The first map is Peak Ground Acceleration (PGA) 
map at bedrock for 500 years return period in the 
Indonesian Earthquake Code, SNI 03-1726-2002 [1]. 
This hazard map is used for designing general 
buildings. The second is the hazard maps for 
designing waterworks (dam). This map was 
developed by Najoan and published by the Research 
centre for Waterworks, Department of Public Works 
[2]. The third map is used for designing bridge and 
road construction published by the Research Centre 
for Roads and Bridgeworks [3]. This map is referred 
to the map developed by Najoan with 50 and 100 
years life time of structure or 500 and 1000 years 
return period of earthquake.  
 
The map for PGA at bedrock in the SNI 03-1726-
2002 (Figure 1e) was developed by averaging values 
from four seismic hazard maps developed by four 
different research groups in Indonesia (Figure 1a to 
1d). These seismic hazard map were developed using 
total probability theorem [4] and by applying area 
sources model (2-dimension model).  
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This 2-dimension (2-D) model has some limitations 
in modeling the fault source geometries. Moreover, 
several great earthquake occurrences in Indonesia in 
the last two years inquire revision of seismic hazard 
parameters in SNI 03-1726-2002. These earthquake 
events must be considered in determining seismic 
hazard parameters especially maximum credible 
earthquake magnitude (MCE). 
 
Mayor Tectonic of Indonesia Region.  
 
Indonesia Region, famous as "supermarket of 
disaster", is located in a tectonically very complex 
and very active area. According to Bird et al.[5],  this 
region consists of three large tectonic plates and nine 
small ones (Figure 2). The plates with different types 
of movement have created subduction and fault 
zones which are continuously active [6]. 
 
The Australia plate subducts beneath the Eurasian 
plate along the Java trench. The direction of 
convergence is normal to the trench South of Java, but 
oblique to the trench Southwest of Sumatra. It is 
widely accepted that the oblique subduction of 
Sumatra is partitioned into normal subduction along 
the trench and strike-slip along the trench-parallel 
Sumatran Fault [7] . Further East, the continental 
part of the Australian plate collides with the Banda 
arc, resulting in widespread deformation throughout 
the Banda island-arc. Further complicating the 
tectonics of East Indonesia, Australian continent also 
collides with the Pacific oceanic plate, resulting in 
uplift and extensive faulting on the island of New 
Guinea. Australia-Pacific convergence is highly 
oblique and appears to be partitioned into components 
perpendicular and parallel to the margin.  
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Figure 1. Indonesia Hazard Map from four researches and as in SNI 03-1726-2002 [1]. 



Asrurifak, M., et al / Spectral Hazard Map for Indonesia with a Return Period of 2500 Years / CED, Vol. 12, No. 1, March 2010, pp. 52–62 

 54

The perpendicular component is taken up by crustal 
shortening in the Highlands thrust belt and very 
likely, subduction along the New Guinea and 
Manokwari trenches. The margin-parallel compo-
nent results in left-lateral shear zones along North 
New Guinea. The existence of subduction zones have 
created zones of earthquakes that contribute to the 
event earthquakes occurred in the Indonesian 
Region. 

The magnitude produced by fault movement of this 
mechanism depends on the area of the fault 
coupling. There are some potential active faults 
distributions around Indonesia Islands. The active 
fault features and parameters used in study based 
on published reports proposed by several researchers 
[3, 8-20]. General condition of the mayor tectonic 
features was shown in Figure 3.  

 
Figure 2.. Mayor tectonic plates of Indonesia region [5] and velocity movement base on GPS from 1991 to 2001 as on ITRF-
2000 [6]. 

 

 
Figure 3. Major tectonic feature Indonesia region (compilation of several researchers). 
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Seismic Hazard Analysis  
 
The goal of most seismic hazard modeling is to apply 
the basic understanding of regional seismic sources 
in the development of models that capture geologic 
and seismic event [21]. The process begins with the 
identification and description of possible earthquake 
sources, such as active faults or seismic zones. An 
analysis of past seismic event in the area is 
conducted to identify patterns, outliers and trends. 
There are two general approaches for seismic hazard 
analyses: deterministic seismic hazard analysis 
(DSHA) and probabilistic seismic hazard analysis 
(PSHA) [22]. In traditional earthquake engineering, 
seismic hazard analysis is performed determinis-
tically, considering only a single maximum credible 
earthquake event. The probabilistic approach is 
more rational than this worst-case scenario, since it 
accounts for all possible events (including, of course, 
the worst expected) that would seismically  effects a 
site.  
 
The method of PSHA was developed by McGuire [23] 
based on the probability concept developed by 
Cornell [4], which assumed the earthquake 
magnitude M and the hypocenter distance R as a 
continuous independent random variable. Although 
the basic steps of the method remain the same up to 
today, the models and the computational techniques 
of the analysis keep being improved as the earth 
scientists and engineers collect and process more 
information about earthquakes. The total probability 
theorem can be represented in the most basic form 
as follows, 
P[I ≥ i] = ∫r∫m P [I ≥ i⎮M and R].fM (m).fR (r) dm dr (1) 
Where, 
fM  =  density function of magnitude 
fR  =  density function of hypocenter 

distance 
P [I ≥ i⎮M and R]  =  conditional probability of 

(random) intensity I exceeding 
value i at the site for a given 
earthquake magnitude M and 
hypocenter distance R. 

 
The analysis is done using the software from the 
USGS [24]. Site space for analysis used 0.1 degrees 
of latitude and longitude, so that the calculations of 
seismic hazard for the Indonesia region are over 
than 96,600 sites. Results obtain from this form are 
acceleration at each site, can be used for the 
development of mapping spectra response on the 
bedrock. The selected period is PGA, T = 0.2 sec and 
T = 1.0 sec, where this period is as in the IBC-2006 
[25]. 
 
Seismic Source Models 
 
A seismic source model is defined as a seismically 
homogenous area, in which every point within the 

source zone is assumed to have the same probability 
of being the epicenter of a future earthquake [26]. 
The Models were developed using earthquake 
catalogs, tectonic boundaries, and fault information, 
where composed of background seismicity, fault and 
subduction sources (Fig. 4) as recently developed by 
USGS for U.S. hazard map [27]. 
 

Surface 

 
 
Figure 4. Seismic source model as USGS proposed USGS 
(illustrated by author).  
 
Background seismicity in the model accounts for 
random earthquakes on unmapped faults and 
smaller earthquakes on mapped faults. A type of 
background seismicity is gridded models that are 
based on spatially smoothed earthquake rates [28]. 
Background sources are based on the declustered 
(dependent event removed) earthquake catalog. This 
model accounts for the observation that larger 
earthquakes (M ≥ 5) occur near smaller (M≥ 4 or 5) 
earthquakes. Gridded seismicity included in the 
model is based on earthquakes at five depth 
intervals: 0-50 km as shallow source, 50–100 km, 
100–150 km, 150–200 km and 200–300 km as deep 
source model. A truncated-exponential or Gutenberg-
Richter (GR) [29] magnitude-frequency distribution 
between M 5.0 and M 6.5 is used to model rates for 
different sizes of earthquakes in each grid cell or 
zone. 
 
Fault source model is used for well-mapped as 
geographically and seismologically faults. The length 
of the mapped fault and downdip width estimated 
from seismicity may be used to calculate maximum 
magnitudes of earthquakes expected to occur on 
these faults [30]. For determining magnitude from 
fault area or surface length on different segments or 
multi-segment ruptures the relations of Wells and 
Coppersmith [30] are used. The major tectonic 
feature (Figure 3) and sense of faulting, slip-rate, 
dip, width and maximum magnitude are estimated 
based on published data.  
 
Subduction source model is the model of the seismic 
source, which represents the earthquake occurrence 
when plates are being subducted under an island arc 
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or continent. Information used as input parameters 
of this model include the location of subduction in the 
latitude and longitude coordinates, rate and b-value 
of the subduction area that can be obtained from the 
historical earthquake data with least square (GR) 
method [29]. This model was Limited to 50 km depth 
of the source rupture or  Megathrust zones, deeper 
zones or Benioff zones are represented by deep 
background source models. 
 
Recurrence relations 
 
Recurrence relations are the means of defining the 
relative distribution of large and small magnitude 
and incorporating the seismic history into the hazard 
analysis. On the basis of worldwide seismicity 
catalog, Gutenberg-Richter [29] established the log-
linear relation given by Equation (2). This relation 
has been assumed to apply to individual areal and 
fault sources as well. One of the steps in 
characterizing seismic sources is the assignment of a 
maximum magnitude to each source. This requires 
the GR line to taper into the maximum value as 
shown in Figure 5.a. This distribution is called the 
truncated exponential and is given in exponential 
form in Equation (3). 

LogN(M) = a – bM  (2) 

Where N(M) is the number of earthquakes per year 
with a magnitude equal to or greater than M and a 
and b are constants for the seismic zone. N is 
associated with a given area and time period. 

N(M) = [β exp(-β (M-Mmin))]/[1- exp(-β (Mmax-Mmin))] (3) 

Where Mmax is the assigned maximum magnitude, 

Mmin is the smallest earthquake that needs to be 
considered, β = b ln(10) and b is the slope of the GR 
line in Figure 5a. Source specific values of b are used 
in this equation. 
 
The truncated exponential model is used for shallow 
and deep background sources with weighting of 1.0. 
Fault segments tend to have occurrences of 
earthquakes of similar size or within a narrow range 
of magnitudes. These earthquakes are called 
characteristic earthquakes. Typically smaller 
earthquakes on the fault follow the GR line and the 
characteristic earthquakes occur at higher rates. So 
for fault and subduction sources both truncated 
exponential (GR) and characteristic models (char) 
are used with a weighting of 0.34 and 0.66, 
respectively A characteristic model is used following 
Youngs and Coppersmith [31] shown in Figure 5b.  
 
Determining the maximum magnitude in seismic 
source model for the hazard analyses is important. 
There are two ways in determining the maximum 
magnitude. The first is determined from historical 
earthquake, and second is determined at the zones 
where only few historical earthquake data but the 
fault system that have potential for the occurance of 
big earthquake magnitude, so that the value of the 
maximum magnitude can be taken using the 
equation proposed Wells & Coppersmith [30].  
 
Data Collection and Processing  
 
The analysis of seismic hazard assessment at the 
site of interest needs all data that record the 
earthquake event occurred in that site for a specific 

 
Figure 5. a)Truncated exponential distribution of recurrence rates, b) Characteristic earthquake occurrence 
model after Schwartz and Coppersmith [31] 
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time period of observation. In this study, historical 
earthquake event is compiled from many sources, 
such as: 

 Earthquake listings held by the National Earth 
quake Information Service U.S. Geological  
Survey (NEIS-USGS) of the United States, which 
is a compilation of several catalogs from sources 
such as: The Bureau Central International de 
Séismologie (BCIS), the International Seismolo-
gical Summaries (ISS), the International 
Seismological Center (ISC), the Preliminary 
Determination of Epicenters (PDE), and The 
Advanced National Seismic System (ANSS) 
catalog.  

 Indonesia earthquake listing prepared by the 
Bureau of Meteorology and Geophysics (BMG), 
Jakarta, Indonesia. 

 Centennial Catalog which is compiled from Abe, 
Abe & Noguchi, Newcomb & McCann catalog 
[32], where several large event in Indonesia have 
been relocated and Pacheco & Sykes catalog [33], 
where the earthquakes were corrected for 
heterogeneity’s caused presumably by changes in 
instrumentation, reporting and/or detection 
capabilities. 

Period of data from 1900 to 2007, but the annual 
rate for the analysis uses data from 1964 to 2007. 
The catalogs from various sources generally have 
varied magnitude scale. The varied magnitude 
should be converted into one same scale before it is 
uses in PSHA. Magnitude scale like surface wave 
magnitude (Ms), local Richter magnitude (ML), and 
body wave magnitude (mb) is converted to the 
moment magnitude (Mw). The analysis of conversion 
in this study uses earthquake catalog of Indonesia 
region that is collected from various sources as 
mentioned above. Using regression analysis (Figure 
6) correlation formula for the conversion magnitude 
scale for Indonesia region, is obtained as seen in 
Table 1. 
 
PSHA is based on independent earthquake (main-
shock) event. Several empirical criteria to identify 
dependent event developed based on a range of time 
and a specified distance from a large earthquake 
occurrence have been made by some researchers as 
Arabasz & Robinson [34], Garner & Knopoff [35] and 
Uhrhammer [36]. Shorting dependency result using 
Garner & Knopoff [35] can be seen in Figure 7.  
 

 

  
Figure 6. Magnitude scale corelation chart from earthquake catalog Indonesia region. 

 
 

Table 1: Convertion corelation formula several magnitude scale for Indonesia region. 

Convertion corelation Number of Data Range of Mag Consistency (R2) 
Mw = 0.143Ms2 – 1.051Ms + 7.285 3.173 4.5 ≤ Ms ≤ 8.6 93.9% 
Mw = 0.114mb2 – 0.556mb + 5.560 978 4.9 ≤ mb ≤ 8.2 72.0% 
Mw = 0.787ME + 1.537 154 5.2 ≤ ME ≤ 7.3 71.2% 
mb = 0.125ML2 - 0.389x + 3.513 722 3.0 < ML < 6.2 56.1% 
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Attenuation 
 
Attenuation relations tend to be regionally specific, 
unfortunately there is no attenuation specifically 
developed for Indonesia region. The only way is to 
adapt attenuation function derived in other region, 
which is similar to Indonesia region tectonically and 
geologically. It is of importance that the selection 
was based on earthquake mechanism, which is 
generally categorized into background, fault and 
subduction source zones. Some attenuation relation-
ships have used Next Generation Attenuation (NGA) 
as listed:  
a) Attenuation for Shallow Background. 

1) Boore-Atkinson NGA [37].  
2) Campbell-Bozorgnia NGA [38].  
3) Chiou-Young NGA [39].  

b) Attenuation for Deep Background Sources. 
1) Atkinson-Boore intraslab Puget Sound region 

BC-rock condition [40].  
2) Geomatrix slab seismicity rock [41].  
3) Atkinson-Boore intraslab seismicity world 

data BC-rock condition [42].  
c) Attenuation for Fault Sources. 

1) Boore-Atkinson NGA [37]. 
2) Campbell-Bozorgnia NGA [38]. 
3) Chiou-Young NGA [39]. 
 
 

d) Attenuation for Subduction Sources. 
1) Geomatrix subduction [41]. 
2) Atkinson-Boore BC rock and global Source 

[42].  
3) Zhao et al., with variable Vs-30 [43].  

 
Logic-tree by Power et. al. [44]; Kulkarni et al. [45]; 
Coppersmith and Youngs [46]  is used in this study 
in order to allow uncertainties in selection of models 
for recurrence model, maximum magnitude and 
attenuation function to be considered. The weighting 
of logic tree used in the analysis can be seen in Table 
2a and 2b. 
 
Result and Discussion  
 
Spectral hazard analysis on this study uses shallow 
background, deep background, fault and subduction 
seismic source models as recently developed by 
USGS for U.S. hazard map [27]. 
 
Hazard maps of PGA at bedrock with 5% damping 
and spectral acceleration at 0.2, and 1.0 sec with 2% 
probability of exceedance in 50 years or equivalent to 
2500 year return period are shown in Figures 8 to 
10. respectively.  
 

 
   (a) Epicentre of all shallow event (0-50 km) from 1900 to 2007                    (b) Epicentre of shallow main event (0-50 km) 
 

 
    (c) Epicentre of all deep event (50-300 km) from 1900 to 2007                     (d) Epicentre of deep main event (0-50 km) 
 
Figure7. Shorting dependency earthquakes catalog Indonesia region 
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Tabel 2a. Logic tree weighting for shallow and deep background sources. 

Recurrence Mmin Mmax Mechanism Attenuation 
Shallow background 

(GR) 
(1) 

5 6.5 
Strike slip (0.5) 
Reverse (0.25) 
Normal (0.25) 

Boore-Atkinson NGA,  2008 (1/3) 
Campbell-Bozorgnia NGA,  2008 (1/3) 
Chiou-Young NGA 2008 (1/3) 

Deep background 
(GR) 
(1) 

5 7.8 
Strike slip (0.5) 
Reverse (0.25) 
Normal (0.25) 

Atkinson-Boore intraslab 2003 (1/3) 
Youngs et al, 1997 (1/3) 
Atkinson-Boore BC-rock, 1995 (1/3) 

 
 

Tabel 2b. Logic tree weighting for fault and subduction sources. 

Recurrence Mmin Mmax Attenuation 

Fault   
(GR) 
(0.34) 

6.5 
Mmax-0.2 (0.2) 
Mmax  (0.6) 
Mmax+0.2 (0.2) 

Boore-Atkinson NGA,  2008 (1/3) 
Campbell-Bozorgnia NGA,  2008 (1/3) 
Chiou-Young NGA 2008 (1/3) 

Fault   
(Char) 
(0.66) 

- 
Mmax-0.2 (0.2) 
Mmax  (0.6) 
Mmax+0.2 (0.2) 

Boore-Atkinson NGA,  2008 (1/3) 
Campbell-Bozorgnia NGA,  2008 (1/3) 
Chiou-Young NGA 2008 (1/3) 

Subduction  
(GR)  
(0.34) 

7.1 
Mmax-0.2 (0.2) 
Mmax  (0.6) 
Mmax+0.2 (0.2) 

Youngs et al., 1997 (1/3) 
Atkinson-Boore BC rock, 2003 (1/3) 
Zhao et al., 2006 (1/3) 

Subduction (Char) 
(0.66) - 

Mmax-0.2 (0.2) 
Mmax  (0.6) 
Mmax+0.2 (0.2) 

Youngs et al., 1997 (1/3) 
Atkinson-Boore BC rock, 2003 (1/3) 
Zhao et al., 2006 (1/3) 

 

 

 

Figure 8. Map of Peak Ground Acceleration (PGA) of Indonesia for 2% probability of exceedance in 50 years (2500 years 
return period of earthquake) 
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In general, the results of seismic hazard expressed 
significantly higher on the active fault compared to 
the SNI 03-1726-2002.  
 
The hazard value for PGA on bedrock in 2500 years 
return period (2% probability exceeded in 50 years) is 
about 1.2 - 3 times of the value of the SNI 03-1726-
2002 (Figure 1). The increase of hazard values is 

affected by the increase of maximum magnitudes 
and other input parameters and by utilizing 3-D 
earthquake source model not to speak of 2500 and 
500 years return period. 
 
The spectral hazard map developed in this study will 
be proposed as a revision for the current seismic 
hazard map of Indonesia in Indonesian Seismic 

 

Figure 9. Map of 0.20 sec spectral acceleration of Indonesia for 2% probability of exceedance in 50 years (2500 years return 
period) 
 
 

 

Figure 10. Map of 1.0 sec spectral acceleration of Indonesia for 2% probability of exceedance in 50 years (2500 years return 
period). 
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Building Code SNI-03-1726-2002 especially for 
maximum credible earthquake magnitude (MCE) 
design. 
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