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Abstract: The discrete-Kirchhoff Mindlin quadrilateral (DKMQ) element has recently been 
developed for analysis of composite laminated plates. This paper presents further development of 
the DKMQ for analysis of composite laminated folded plates. In this development, a local 
coordinate system is set up for each element at its centroid. The DKMQ stiffness matrix is 
superimposed with that of the standard four-node plane stress quadrilateral element to obtain a 
24-by-24 folded plate stiffness matrix in the local coordinate system. To avoid singularity of the 
stiffness matrix, a small stiffness coefficient is added in the entries corresponding to the drilling 
degrees of freedom. The local stiffness matrix and force vector are then transformed to the global 
ones and assembled. The accuracy and convergence of the folded plate element are assessed 
using a number of numerical examples. The results show that the element is accurate and 
converge well to the reference solutions. 
 
Keywords: Composite laminated plate; Discrete-Kirchhoff Mindlin quadrilateral element; 
drilling degrees of freedom; folded plate. 
  

 
 

Introduction   
 

Folded plate structures (or, shortly folded plates) are 
assemblies of flat plates, inclined in different direc-
tions, and connected along one or more of their 
edges. Folded plates are widely used in engineering 
applications such as stairs, roofing structures, corru-
gated flooring decks, box girders, ship hulls. Folded 
plates are often made of isotropic and homogeneous 
materials such as metals. In line with the advances 
in material technology, composite laminated mate-
rials provide an excellent alternative for designing 
stiffer, stronger and lighter folded plates. Composite 
laminated plates are plates formed by stacking 
layers of different materials [1,2]. Published 
researches on composite materials can be categorized 
into composite material developments, e.g. [3,4], 
mechanics, e.g. [1,5–7], and design, e.g. [8,9]. This 
paper belongs to the mechanics‟ category. 
 

Nowadays the practical method to analyze the 
mechanical behavior of plates and shells (including 
folded plates) is the finite element method (FEM). 
Since the early development of the FEM in the late 
1950‟s, various plate bending elements have been 
developed and applied in engineering practice. 
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The commonly used underlying plate theories in the 

development of plate bending elements are the 

Kirchhoff theory and Reissner-Mindlin theory. The 

latter includes the effects of transverse shear defor-

mation and rotary inertia and thus is a more general 

approach than the former.  

 

Among countless available plate bending elements, 

the discrete-Kirchhoff Mindlin quadrilateral 

(DKMQ) element proposed by Katili [10] is of our 

interest. The DKMQ has four nodes and three 

degrees of freedom (d.o.f) at each node, that is, a 

deflection and two rotations. It is formulated based 

on the Reissner-Mindlin theory and the assumed 

shear strain fields and thus applicable for analysis of 

both thin and thick plates. The benefits of the 

DKMQ are: (1) it is free from shear locking; (2) it has 

only three rigid-body modes (no spurious energy 

modes); and (3) it passes the constant-curvature and 

constant-shear patch tests. The DKMQ element has 

been enhanced to a 24-d.o.f shell element that can 

take into account the warping effects and coupling 

bending-membrane energy [11]. It has also been 

enhanced for analysis of composite laminated plates 

[6]. Recently, the DKMQ element has been success-

fully applied to plate bending buckling problems [12].   

 

The applicability of composite laminated materials to 

folded plate structures has been increased signifi-

cantly [13-14]. The design and analysis of composite 

laminated folded plates require an enhancement of 

the computational methods previously directed to 

plates with isotropic and homogeneous materials. 

However, literature addressing bending analysis of 

laminated composite folded plates is very little. For 
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this reason and considering the good performance of 

the DKMQ element in analyzing composite lami-

nated plates [6], in this paper we extend the 

application of the DKMQ element to bending 

analysis of composite laminated folded plates.  

 

The developed DKMQ folded plate element has six 

degrees of freedom, comprising three translational 

and three rotational components, at each element 

node. The stiffness equation is obtained by super-

posing the equations of the DKMQ element and 

standard Q4 plane stress element. A small stiffness 

coefficient corresponding to the drilling degrees is 

added to the stiffness matrix to avoid equation 

singularity.  

 

Reissner-Mindlin Folded Plate Theory 
 

Consider a composite laminated folded plate com-

ponent defined in a global coordinate system X-Y-Z 

as illustrated in Figure 1. A local coordinate system, 

x-y-z, is established, where the x-y plane lies on the 

middle surface of the plate and the z-axis perpen-

dicular to the plate surface. The plate is made from a 

symmetrically stacking of nl layers of composite 

materials possessing orthotropic material properties 

(Figure 2). Each layer k, defined by zk ≤ z ≤ zk+1, is 

assumed to be in the plane stress condition (the 

normal stress in z-direction is zero) [2].  

 

 
 

Figure 1. A Composite Laminated Folded Plate Compo-

nent, the Global and Local Coordinate Systems, and the 

Sign Convention for the Displacement Components and 

Rotations 

 

 
Figure 2. Layers (laminas) of Orthotropic Materials in a 

Composite Laminated Folded Plate and an Illustration of 

the Displacement and Rotation of a Normal Line 

Applying the Reissner-Mindlin plate theory [1,2,6] 

and employing the local coordinate system as the 

reference frame, the displacement of a generic point 

P(x, y, z) in the plate can be expressed as  

  {

        
        

        
}  {

       

       

       
}  {

        

        

 

} (1) 

 

where u, v, w are the displacement vector com-

ponents of point P in the x, y, and z directions, 

respectively, u0, v0, w0 are the displacement vector 

components of the projected point P0 on the mid-

surface in the x, y, and z components, respectively, 

and βx and βy are the rotations of normal line passing 

through points P0P in the planes parallel to the x-z 

and y-z planes, respectively. The positive directions 

of the displacement components and the rotations 

are shown in Figure 1. An illustration of the 

displacement and rotation of a normal line in the 

plane parallel to the x-z plane is given in Figure 2.  
 

The strain components in the folded plate can be 

split into in-plane strains, εp, due to membrane and 

bending effects, and transverse shear strains, εs, that 

is, [2]  

   {

  
  
   

}        (2) 

   {

    

    

         

};            {

    

    

         

} (3) 

   {
   
   

}  {
      

      
} (4) 

 

In Eqs. (2)-(4), εx and εy are the extensional strains in 

the x and y directions, respectively; γxy is the in-plane 

shear strain; γxz and γyz are the transverse shear 

strains in the planes parallel to the x-z and y-z 

planes, respectively. Vectors εm and εb respectively 

contain the strains corresponding to the membrane 

and bending deformations. Vector κ contains the 

curvatures.  
 

Consider a layer k of the composite laminated plate 

with orthotropic axes L, T, z, and isotropic in the 

plane T-z (Figure 3). The L-axis is parallel to the 

longitudinal fiber direction of the composite material 

whereas the T-axis is transversal to the fiber 

direction. The relationships between the in-plane 

stresses and shear stresses in the orthotropic L-T-z 

axes, that is σL, σT, τLT and τLz, τTz, with their 

conjugate strains are given as [2,6,15]: 

  
    

   
  ;       

    
   

  (5) 

where 

  
  {

  

  

   
} ;       

  {

  
  

   

} (6) 
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[

        
        

      

] with            (7) 

  
  {

   
   

} ;     
  {

   

   
} ;     

  [
    
    

] (8) 

 

In Eqs. (7)-(8), EL and ET are Young‟s moduli in the L 

and T directions, respectively. The Poisson‟s ratio νLT 

is the ratio of transverse strain in the T direction to 

the longitudinal strain in the L direction when 

stressed in the L direction (similarly for νTL) [1]. The 

in-plane constitutive matrix, EpL, is symmetrical, 

that is, νTLEL = νLTET. It is apparent that there are 

totally six independent material parameters, 

namely, EL, ET, νLT (or νTL), GLT, GLz, and GTz. In 

many cases, GLz = GLT [2, 6] and thus the indepen-

dent parameters are reduced to five.  

 

 

Figure 3. Orthotropic Coordinate System and its Orien-

tation Angle, θ, for a Lamina [6] 
 

In a composite laminated plate, the direction of the 

fiber direction L may change for each layer. This 

direction is represented by an angle θ between the 

fiber direction and the local x-axis (Figure 3). For a 

layer k with the fiber angle θk, the constitutive 

equations with reference to the local x-y-z axes are 

[2,6]  

        ;             (9) 

where 

   {

  

  

   
} ;        {

   
   

} (10) 

     
   

    ;          
   

    (11) 

   [
      
       

           

] ;        [
  
   

] (12a) 

      ;            (12b) 
 

Using the definition of the plate stress resultants 

[1,2,6], Eqs. (2)-(4) and Eq. (9), the generalized con-

stitutive equations for the symmetrically laminated 

plate can be expressed as: 

       ;         ;          (13) 

where 

  {

  

  

   

} ;     {

  

  

   

} ;     {
  

  
} (14) 

   ∑      
  
    ;        ∑

 

 
     

    
     

  
    (15) 

   [
            

            
]   with    

[
      

      
]=∑      

  
    (16) 

 

In Eq. (14), Nx and Ny are the normal membrane 

forces in the x and y directions, respectively; Nxy is 

the shear membrane force; Mx and My are the 

bending moments corresponding to the normal stres-

ses in the x and y directions, respectively, Mxy is the 

twisting moment; Qx and Qy are the transverse shear 

forces on planes normal to the x- and y-axes, res-

pectively. The units of all of these quantities are force 

or moment per unit width of the plate. In Eqs. (15) 

and (16), Epk and Esk are the in-plane and transverse 

shear constitutive matrices, respectively, as given by 

Eq. (11), for the k-th layer; hk = zk+1 – zk is the 

thickness of the k-th layer (see Figure 2). In Eq. (16), 

k11, k22, and k12 are shear correction factors to ac-

count for the discrepancy between the actual stress 

distribution and the constant stress predicted by the 

Reissner-Mindlin theory. These factors depend on 

lamina properties and lamination scheme [1].   

 

The variational basis of the DKMQ element [6,10] is 

the Hu-Washizu functional. For the composite 

laminated folded plate with the middle plate surface 

A subjected to a static distributed load fz on A (force 

per unit area), the Hu-Washizu functional can be 

expressed as: 
  

            (     )    (          ̅   )  

      (17) 

where 

   
 

 
∫   

 
 

       ;        
 

 
∫           

 (18) 

   
 

 
∫  ̅ 

 
 

   ̅    ∫   (    ̅ )  
 

 (19) 

  ∫         
 (20) 

 

The independent variables subjected to variations 

are the generalized displacements, u0, v0, w0, βx, βy, 

independent (assumed) strains, xz , xz , and shear 

forces, Qx, Qy.  

 

Folded Plate Element Formulation 
 

It is obvious from Eqs. (1)-(3), (13), (17) and (18) that 

the membrane and bending deformations and stress 

resultants in the symmetrically laminated folded 

plate are uncoupled. In view of this, the finite 

element formulation of the folded plate can be 

developed simply by superposing a plate bending 

element with a membrane (plane stress) element. In 
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the present study, the DKMQ element for analysis of 

composite plate bending structures [6] is superposed 

with the standard quadrilateral membrane element 

(Q4) as shown in Figure 4.  

 

The DKMQ element is formulated using the stan-

dard bilinear interpolation for displacement compo-

nent w0 and the bilinear interpolation plus quadratic 

hierarchical interpolation for the rotations βx and βy 

[6, 10]. The assumed shear strain fields are obtained 

by interpolating assumed tangential shear strains at 

each element side. These tangential shear strains 

are obtained using the moment equilibrium and 

constitutive equations on each side. The shear strain 

constraint corresponding to the second term of the 

shear strain energy, Us, in Eq. (19) is represented in 

a discrete manner on the mid-points of the element 

sides. The detailed formulation leading to the ele-

ment stiffness matrix of the DKMQ element for a 

composite laminated plate is presented by Katili et al 

in [6].  

 

The Q4 element is formulated based on the standard 

bilinear interpolation of the displacement compo-

nents u0 and v0. This element corresponds to the 

membrane strain energy, Eq. (18a), in the Hu-

Washizu functional, Eq. (17). The formulation 

leading to the stiffness equations for this standard 

element can be found in most FEM texts such as [15-

17].  

 

 

Figure 4. Four-node Folded Plate Element Formed by 

Superposing the DKMQ Element and the Standard Q4 

Element (typical degrees of freedom at each node is shown 

at node 2) 

 

The superposed folded plate element has six degrees 

of freedom per node in the global coordinate system, 

that is, U0i, V0i, W0i, θxi, θyi, θzi, i = 1, …, 4. However, it 

originally has only five degrees of freedom u0i, v0i, w0i, 

βxi, βyi, per node in the local coordinate system 

because both the DKMQ and standard Q4 elements 

have no degree of freedom corresponding to the 

rotation about local z axis (drilling degree of 

freedom). To avoid singularity of the global element 

stiffness matrix, additional degree of freedom βzi per 

node with a small artificial rotational stiffness has 

been included (Figure 4).  

The procedure to obtain the element stiffness matrix 

of the present folded plate element is as follows:  

Step 1: Set up a local coordinate system at the 

element centroid  

Position vector of the element‟s centroid is  

    

 
              (21) 

in which X1, …, X4 are the position vectors 

(coordinates) of element nodes 1, 2, 3, and 4, respec-

tively, referred to the global X, Y, Z axes. The local 

coordinate system is defined by its orthonormal basis 

vectors î, ĵ, k̂ . Vector î is chosen to be parallel to 

element edge from node 1 to node 2, that is,  

 ̂     |   |⁄  ;               (22) 

where V12 is the vector from node 1 to node 2 and the 

symbol „| ‟ represents the length of a vector. Vector 

k̂ , which is perpendicular to the element plane, is 

 ̂           |       |⁄  ;               (23) 

where V13 is the vector from node 1 to node 3. Lastly, 

vector ĵ is 

 ̂   ̂   ̂ (24) 

Coordinate transformation from a global position 

vector X to its corresponding local position vector is 

given as  

          ;       [ ̂  ̂  ̂]  (25) 

in which Q is the transformation matrix from the 

global to local coordinates.  

 

Step 2: Calculate the DKMQ and Q4 element 

stiffness matrices in the local coordinate system 

The DKMQ element stiffness matrix of the order of 

12 × 12 is given as 

            (25a) 

   ∫   
           ;        ∫   

           (25b) 

where Bb is the curvature-displacement matrix and 

Bs is the shear strain-displacement matrix. The full 

expressions of Bb and Bs are given in Reference [6].  

 

The Q4 element stiffness matrix of the order of 8 × 8 

is given as 

    ∫   
        

   (26) 

where Bm is the standard membrane strain-

displacement matrix (see e.g. [16,17]).  

 

Step 3: Superpose the DKMQ and Q4 element 

stiffness matrices  

Each node of a folded plate element has six degrees 

of freedom (see Fig. 4), that is, three translations u0i, 

v0i, w0i and three rotations βxi, βyi, βzi, i=1,…, 4. The 

DKMQ and Q4 element matrices are superposed to 
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obtain the folded plate element stiffness matrix of 

the order of 24 × 24, kFP. In this process, the entries 

of the DKMQ and Q4 stiffness matrices are placed 

on the appropriate location in the folded plate 

stiffness matrix. The stiffness coefficients corres-

ponding to βzi, i=1, …, 4 are initially zero.  

 

Step 4: Add an artificial stiffness coefficient corres-

ponding to the drilling degrees of freedom  

Small stiffness coefficients corresponding to βzi are 

added to kFP. Following Bathe‟s suggestion [17], the 

coefficients are taken to be one-thousandth of the 

smallest diagonal element of kFP.  

 

Step 5: Transform the element stiffness matrix to the 

global coordinate system  

The folded plate element stiffness matrix referred to 

the global degrees of freedom, KFP, is obtained using 

the transformation equation 

           (27a) 

  

[
 
 
 
  

  

  

  ]
 
 
 

     

 (27b) 

   

[
 
 
 
 
 

 ̂ 

 ̂ 

 ̂ 

    

    

    

 ̂ 

  ̂ 

 ̂ 

    

]
 
 
 
 
 

   

 (27c) 

 

where Ti is the transformation matrix from global 

degrees of freedom U0i, V0i, W0i, θxi, θyi, θzi to local 

degrees of freedom u0i, v0i, w0i, βxi, βyi, βzi.  
 

Numerical Tests and Discussions 
 

The folded plate element formulation has been coded 

using Matlab Version 8.3. In this section, a series of 

patch tests are first presented to verify the correct-

ness of the element formulation and its implemen-

tation in Matlab. Then, two folded plate examples 

taken from Peng et al. [18] are presented to assess 

the element accuracy and convergence.  
 

Patch Tests using an Inclined Composite 

Laminated Plate  
 

Patch tests for the developed element were carried 

out utilizing an inclined composite laminated plate (a 

typical component of a folded plate) with the mesh 

shown in Fig. 5. The plate is composed of three 

layers of orthotropic materials with the lamination 

scheme of 0°/0°/0° (taken from an example in [6]). 

The thicknesses of the skin layers (layer 1 and layer 

3) and the core layer (layer 2) are 0.1h and 0.8h, 

respectively. The material parameters of the skin 

layers are: EL = 3.4156 MPa, ET = 1.7931 MPa, vLT = 

0.44, GLT = 1 MPa, GLZ = 0.608 MPa, GTZ = 1.015 

MPa, k11 = k22 = 0.3521, k12 = 0. The E and G values 

of the core layer are 10 times lower than those of the 

skin layers. The tests include the inclined plate 

under conditions of constant curvatures, constant 

transverse shear strains, and constant membrane 

strains. The thickness is h = 100 mm in the constant 

curvature and constant membrane strain tests. In 

the constant transverse shear strain test, however, 

the thickness is taken to be extremely thick h = 1000 

m. The reason to take this extreme thickness is that 

the condition of constant transverse shear strain 

with zero curvature is only possible when the plate is 

extremely thick [19].  

 

 
Global nodal coordinates (m): 

 1 0,0,0   

 2 5 2,0,5 2  

 3 5 2,10,5 2  

 4 0,10,0  

 5 2,2, 2  

 6 4 2,3,4 2  

 7 4 2,7,4 2  

 8 2 2,7,2 2  

Figure 5. Finite Element Model of an Inclined Composite 

Laminated Plate for Patch Test 

 

Constant Curvature Test 

The displacements and rotations at the nodes 1, 2, 3, 

and 4 were prescribed consistent with a constant 

curvature condition given by 

    

 
           (28a) 

      
  ;         

 
   (28b, c) 
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The analysis using the DKMQ folded plate element 

produced the displacements and rotations with 
maximum relative errors of the order of 10−10 and 

10−9, respectively, and the moments with maximum 
relative errors of the order of 10−10. Therefore, the 
element passes the constant curvature patch test.  
 

Constant Transverse Shear Strain Test 

The displacements and rotations at the nodes 1, 2, 3, 

and 4 were prescribed consistent with a constant 

transverse shear condition given by 

   

 
      ;       

 

 
 ;       

 

 
 (29) 

 

The analysis produced the displacements and 

rotations with maximum relative errors of the order 

of 10−6 and 10−5, respectively, and the shear forces 

with maximum relative errors of the order of 10−5. 

The cause of the errors is the nonzero curvature 

effect (the curvature will be zero if the plate has 

infinite thickness) and is not the element inability to 

produce constant shear stain conditions. Therefore, 

the element passes the constant shear patch test.  
 

Constant Membrane Strain Test 

This test was carried out by consecutively applying a 

distributed tension force of 0.5 N/m along edge 1-4 in 

the direction of L-axis, distributed tension force of 0.5 

N/m along edge 3-4 in the direction of T-axis, and 

then a distributed shear force of 0.5 N/m along all 

edges. In each case, the inclined plate was given an 

appropriate supports (displacement boundary condi-

tions) to prevent the rigid body motions. The 

resulting membrane forces in each case were exact. 

Thus the folded plate element passes the constant 

membrane strain test.  
 

L-Shaped Folded Plate 
 

An L-shaped folded plate made up of two identical 

square laminates is subjected to uniformly 

distributed load fz = −10 Pa on each laminate [18] 

(see Figure 6(a)). The folded plate is clamped along 

edges a and b. The laminates made up of four layers 

of orthotropic material with the lamination scheme 

of −45°/45°/45°/−45°. All of the plies have the same 

thickness of 0.025 m with the material properties: EL 

= 2.5 × 107 Pa, ET = 1.0 × 107 Pa, νLT = 0.25, GLT = GLz 

= 5 × 105 Pa, GTz = 2 × 105 Pa. The shear correction 

factor is taken to be k11 = k22 = k12 = 5/6. The 

structure was analyzed using different degrees of 

mesh refinements from 2 × 2 to 64 × 64 meshes for 

each laminate. The model with 8 × 8 mesh for each 

laminate is shown in Figure 6(b). The observed result 

was the deflection at the center point of the top plate.  

 

The results using the present element are shown in 

Table 1. The reference result was scaled from the 

given figure in Peng et al [18], which was obtained 

using ANSYS SHELL99 element with 5581 nodes. It 

is seen that the converged result of the present 

element is 5.1% lower than the reference solution. A 

possible reason for this discrepancy is the difference 

in the plate theory and element formulation used in 

the present element from those used in the 

SHELL99 element. Since the discrepancy is 

relatively small, the present element can thus be 

regarded to be reasonably accurate.   

 

 
 

(a) L-shape Folded Plate (adapted from Peng et al. [18]) 

 

 
(b) Finite Element Mesh of     for Each Laminate 

 

Figure 6. L-shape Folded Plate and its Finite Element 

Model 

 
Table 1. Deflection at the Center Point of the Top Plate 

(mm) obtained using Different Meshes of the DKMQ 

Folded Plate Element 

Mesh of each 

laminate 

Present Element 

(mm) 

Relative Difference 

to the Ref. Result 

2 x 2 2.98 27.4% 

4 x 4 3.51 14.3% 

8 x 8 3.64 11.2% 

16 x 16 3.77 8.0% 

32 x 32  3.86 5.9% 

64 x 64  3.89 5.1% 

Peng et al. [18] 4.1   



Wong, F. T. et al. / Development of the DKMQ Element / CED, Vol. 20, No. 1, March 2018, pp. 8–15 

 14 

Half of a Box Structure 

 

This is the second example presented by Peng et al. 

[18]. The problem is a half of a box structure made 

from three square laminates of the size 1 m × 1 m × 

0.05 m as shown in Figure 7(a). The box is subjected 

to a uniformly distributed load fz = −10 Pa on all of 

its three faces. It is pinned (U=V=W=0) at points A, 

B, and C. All of the plies in the laminates have the 

same material properties and shear correction 

factors as in the first example. We consider the 

lamination scheme of Case 2 of Peng et al. [18], that 

is, laminate 1 is taken to be −45°/45°/45°/−45° and 

laminates 2 and 3 to be 45°/−45°/−45°/45°. 

 

 

(a) A Half Box Structure [18] 

 

 
(b) Finite Element Mesh of       

 

Figure 7. A Half Box Folded Plate and its Finite Element 

Model 

 

The structure was analyzed using the present 

element with a mesh of 36 × 36 for each laminate, as 

shown in Figure 7(b). The deflections of laminate 1 

along line X = 0.5 m were observed and presented in 

Fig. 8, together with those given in Peng et al. [18], 

which was obtained using ANSYS SHELL99 

element with 3025 nodes. It is seen that the 

deflection curve from the present element is in 

agreement with the reference curve.  

 
Figure 8. Deflection of Laminate 1 along Line X = 0.5 m  

 

Conclusions 
 

The DKMQ plate element has been developed for 

analysis of composite laminated folded plate struc-

tures. The development was carried out by super-

posing the DKMQ bending element and the 

standard Q4 membrane element and adding a small 

amount of stiffness to the drilling degrees of freedom. 

The numerical tests show that the developed 

element passes all of the patch tests for a folded plate 

element, gives accurate results, and converges well 

to the corresponding true solution. Thus, the present 

folded element can be used as a tool to analyze a 

composite folded plate in practice.  

 

References 
 

1. Reddy, J.N., Mechanics of Laminated Composite 

Plates and Shells, 2nd ed., CRC Press, Boca 

Raton, 2004.  

2. Onate, E., Structural Analysis with the Finite 

Element Method, Vol. 2: Beams, Plates and 

Shells, 1st ed., International Center for Nume-

rical Methods in Engineering, Barcelona, 2013.  

3. Fajrin, J., The Application of Statistical Design 

of Experiments to Study the In-Plane Shear 

Behaviour of Hybrid Composite Sandwich 

Panel, Civil Engineering Dimension, 18(1), 2016, 

pp. 25–30.  

4. Fajrin, J., Zhuge, Y., Wang, H., and Bullen, F., 

Experimental and Theoretical Deflections of 

Hybrid Composite Sandwich Panel under Four-

point Bending Load, Civil Engineering Dimen-

sion, 19(1), 2017, pp. 29–35.  

5. Maknun, I.J., Katili, I., and Purnomo, H., Deve-

lopment of the DKMT Element for Error Esti-

mation in Composite Plate Structures, Inter-

national Journal of Technology, 5, 2015, pp. 

780–789.  

6. Katili, I., Maknun, I.J., Hamdouni, A., and 

Millet, O., Application of DKMQ Element for 

Composite Plate Bending Structures, Composite 

Structures, 132, 2015, pp. 166–174.  



Wong, F. T. et al. / Development of the DKMQ Element / CED, Vol. 20, No. 1, March 2018, pp. 8–15 

 15 

7. Belinha, J. and Dinis, L.M.J.S., Analysis of 

Plates and Laminates using the Element-Free 

Galerkin Method, Computers and Structures, 84 

(22-23), 2006, pp. 1547–1549.  

8. Miki, M. and Sugiyama, Y., Optimum Design of 

Laminated Composite Plates using Lamination 

Parameters, AIAA Journal, 31(5), 1993, pp. 

921–922.  

9. Kazemi, M. and Verchery, G., Design of Com-

posite Laminated Plates for Maximum Buckling 

Load with Stiffness and Elastic Modulus Con-

straints, Composite Structures, 148, 2016, pp. 

27–38.  

10. Katili, I., A New Discrete Kirchhoff-Mindlin Ele-

ment based on Mindlin-Reissner Plate Theory 

and Assumed Shear Strain Fields- Part II: an 

Extended DKQ Element for Thick-Plate Ben-

ding Analysis, International Journal of Numeri-

cal Methods in Engineering, 36(11), 1993, pp. 

1885–1908.  

11. Katili, I., Batoz, J., Jauhari, I., and Hamdouni, 

A., The Development of DKMQ Plate Bending 

Element for Thick to Thin Shell Analysis based 

on the Naghdi / Reissner / Mindlin Shell Theory, 

Finite Element in Analysis and Design, 100, 

2015, pp. 12–27.  

12. Wong, F.T., Erwin, Richard, A., and Katili, I., 

Development of the DKMQ Element for 

Buckling Analysis  of Shear-Deformable Plate  

 

 

                  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bending, Procedia Engineering, 171, 2017, pp. 

805–812.  

13. Niyogi, A.G., Laha, M.K., and Sinha, P.K., Finite 

Element Vibration Analysis of Laminated 

Composite Folded Plate Structures, Shock and 

Vibration, 6(5–6), 1999, pp. 273–283.  

14. Lee, S.Y., Wooh, S.C., and Yhim, S.S., Dynamic 

Behavior of Folded Composite Plates Analyzed 

by the Third Order Plate Theory, International 

Journal of Solids and Structures, 41(7), 2004, 

pp. 1879–1892.  

15. Carroll, W.F., A Primer for Finite Elements in 

Elastic Structures, John Wiley and Sons, New 

York, 1999.  

16. Cook, R.D., Malkus, D.S., Plesha, M.E., and 

Witt, R.J., Concepts and Applications of Finite 

Element Analysis, 4th ed., John Wiley and Sons, 

New York, 2002.  

17. Bathe, K.J., Finite Element Procedures, Pren-

tice-Hall, New Jersey, 1996.  

18. Peng, L.X., Liew, K.M., and Kitipornchai, S., 

Bending Analysis of Folded Laminated Plates by 

the FSDT Meshfree Method, Procedia Engineer-

ing, 14, 2011, pp. 2714–2721.  

19. Batoz, J.L. and Katili, I., On a Simple Triangu-

lar Reissner/Mindlin Plate Element based on 

Incompatible Modes and Discrete Constraints, 

International Journal of Numerical Methods in 

Engineering, 35(8), 1992, pp. 1603–1632.  

 


