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Abstract: Estimating the accurate concrete strength has become a critical issue in civil engi-
neering. The 28-day concrete cylinder test results depict the concrete's characteristic strength 
which was prepared and cast as part of the concrete work on the project. Waiting 28 days is 
important to guarantee the quality control of the procedure, even though it is a slow process. 
This research develops an advanced machine learning method to forecast the concrete 
compressive strength using the concrete mix proportion and early-age strength test results. 
Thirty-eight historical cases in total were used to create the intelligence prediction method. The 
results obtained indicate the effectiveness of the advanced hybrid machine learning strategy in 
forecasting the strength of the concrete with a comparatively high degree of accuracy calculated 
using 4 error indicators. As a result, the suggested study can provide a great advantage for 
construction project managers in decision-making procedures that depend on early strength 
results of the tests. 
 

Keywords: Concrete compressive strength; early-age; machine learning; metaheuristic; 
prediction. 
  

 
 

Introduction   
 

In the construction field, the strength of concrete is a 
significant criterion when selecting a type of concrete 
to be used for a specific purpose. Construction 
concrete will increase in strength for an extended 
time span once it has been poured. The nominal 
strength of concrete is defined by the compressive 
strength of the sample at 28 days. If there was a 
defective mix preparation or mix design on location, 
the test results might show the required strength 
was not reached, resulting in a mandatory repeating 
of the entire procedure, which could be a slow and 
expensive process. 
 

Any failures would require waiting another 28 days 
for the new test results, therefore, there was a great 
need for the ability to determine the final strength of 
concrete at an early-age. Consequently, a suitable, 
fast procedure for predicting the strength of concrete 
would definitely be a major advancement in the 
construction industry [1]. The capability to forecast 
the early compressive concrete strength would 
enable contractors to quickly recognize the concrete‟s 
possible weakness, thereby planning to deal with a 
destruction procedure or to keep going with the 
construction.  
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Additionally, to the advantage of both the user and 

the manufacturer, reliably and quickly forecasting 

the outcomes of a 28-day test would be advantageous 

to all stakeholders involved rather than waiting the 

entire, traditional, 28 days. 

 

Concrete behavior, including forecasting the 

strength of concrete has been an area of interest for 

researchers and is gaining even more interests 

today. There have been several recent scientific 

studies examining the behavior of concrete and the 

potential for improving the estimations of charac-

teristic strength. The research has shown that 

numerous tests have focused on how concrete 

strength is impacted by the mix, however, just a 

handful of studies has concentrated on the 

connection between early testing and the total 28-

day compressive strength test. Furthermore, the 

majority of the scientific studies has certain con-

straints; such as, a lack of advanced technique for 

calculating accuracy, no validating methods 

involved, or working with only a traditional 

approach. 

 

Machine learning techniques have been shown to 

exceed traditional techniques due to their excellent 

learning capabilities [2-6]. The traditional methods, 

like linear regression and decision tree, are not good 

enough to develop a suitable model with regards to 

accuracy and computation time. The least squares 

support vector regression (LSSVR) technique has 

evolved into an excellent machine learning approach 

and has been extensively applied in numerous fields 

because of its advantages. For example, Cheng and 
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Prayogo applied an enhanced LSSVR technique to 

predict the permanent deformation behavior of 

asphalt mixtures [6]. Hoang et al. developed an 

optimized LSSVR model for groutability estimation 

of grouting process [7]. Notably, the hyperpara-

meters of the LSSVR technique must be fine-tuned 

to enhance prediction accuracy. 

 

This study develops a novel hybrid machine learning 

technique called symbiotic organisms search–least 

squares support vector regression (SOS–LSSVR). 

The main objective of this research is to develop an 

advanced, accurate method to improve early-age 

estimates of concrete strength. The SOS–LSSVR 

approach combines an accurate prediction method, 

least squares support vector regression (LSSVR), as 

well as a powerful and new metaheuristic, symbiotic 

organisms search (SOS). The proposed model will be 

examined together with various prediction tech-

niques to establish the prediction model of concrete 

strength with the early-age strength test results. 

 

Least Squares Support Vector Regression 
 

The Basic Model 

 

LS-SVR was first introduced by Suykens and 

Vandewalle [8] as a modification of the conventional 

support vector regression (SVR). The following model 

of interest underlies the functional relationship 

between one or more independent variables by using 

a regression function as states as follows: 
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where Rek   are error variables; 0  denotes a 

regularization constant. 

 

In the previous optimization problem, a regularize-

tion term and a sum of squared fitting errors make 

for the objective function. The Lagrangian is given 

by: 
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where k  are Lagrange multipliers. The conditions 

for optimality are given by: 
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The resulting LS-SVR model for function estimation 

is expressed as: 
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N

k

lkk 
1

),()(   (6) 

where k  and b are the solution to the linear 

system. 
 

The kernel function that is often utilized is a radial 

based function (RBF) kernel; a description is given 

as: 
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where   is the kernel function parameter.  

 

Model Selection in the Training Phase 
 

Initially, the prediction model of the LSSVR is 

trained on a training set, which is a set of samples 

adapted to fit the parameters of the model. The test 

data set is employed to give an impartial assessment 

of the trained model. It is a popular notion that the 

generalization performance of an LSSVR trained 

model relies on fine-tuning of the hyper-parameters 

(and) referred to as “model selection”. In order to 

guarantee optimal performance of the prediction 

model, the two tuning hyper-parameters have to be 

set correctly. 
 

The LSSVR parameter selection is commonly 

referred to as the model selection problem and could 

be put together as an optimization problem. One 

common approach to help with the model selection is 

to use an extensive grid search over the parameter 

domain. Clearly, the parameter domain for grid 

search needs to involve a large search space to cover 

the global optimum. This forces the grid search to 

have expensive computational cost, particularly on 

the large-scale training set. Consequently, a more 

advanced system is required to identify the best 

combination of LSSVR parameters.  
 

Research has shown that there is an increase in 

prediction accuracy when metaheuristic algorithm is 

used as the optimizer for model selection and has 

improved prediction performance in various engi-

neering problems [2,6,9,10]. Many studies have 
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shown that the SOS algorithm is better when 

compared to other metaheuristic algorithms in 

finding the optimal solutions to problems involving 

complex and nonlinear optimization [2,11]. Additio-

nally, a past study has successfully utilized the SOS 

algorithm as a self-automatic tuning framework in 

optimizing hyper-parameters of machine learning 

techniques and has produced a better accuracy when 

compared to a variety of hybrid techniques [12]. 

Therefore, this study uses SOS to enhance the 

prediction accuracy of LSSVR. 

 

The Proposed Metaheuristic-based Machine 

Learning System 

 

The search for optimality proves to be a demanding 

task in many optimization applications. Optimum 

solutions to problems have taken place in nature via 

evolution, where the process of natural selection has 

removed most inferior solutions. Past studies reveal-

ed that metaheuristic algorithms inspired by nature 

like SOS are effective in finding solutions to com-

plicated optimization problems. Therefore, this study 

utilizes SOS to fine-tune the LSSVR hyper-para-

meters, as well as to guarantee excellent prediction 

accuracy. 

 

Symbiotic Organisms Search 

 

The SOS algorithm was proposed by Cheng and 

Prayogo and has become one of the most popular 

metaheuristic algorithms in use today [2,13]. It is 

derived from natural organisms that usually have 

symbiosis–dependency-based relationships. Similar 

to other typical metaheuristic algorithms, the SOS 

algorithm leads to the optimization process of the 

candidate solutions through special search operators. 

The SOS algorithm has been used for solving opti-

mization problems in different areas of research from 

the time it was developed in 2014 [11,14-20]. 

 

To begin with, an ecosystem matrix (population) is 

randomly generated by the SOS. The ecosystem size 

denotes the number of organisms that can be put 

into the ecosystem. Every matrix row corresponds to 

virtual organisms which represents the different 

candidate solutions.  Each virtual organism has to be 

related to the objective value of the current problem. 

The search begins following the initial generation of 

the random ecosystem. The searching process con-

tains three phases, during which the organisms take 

advantage of the interaction (mutualism, commen-

salism, and parasitism). The objective value of the 

updated virtual organism has to be improved so that 

the pre-interaction virtual organisms can be 

replaced. In every iteration, once all phases are done, 

the best virtual organisms can be updated. To 

conclude, the phase cycle continuously until the 

termination criterion has been satisfied. 

SOS uses the three rules of symbioses: (1) mutua-

lism symbiosis, which refers to the reciprocated 

advantages associated with two living organisms; (2) 

commensalism symbiosis, which one organism takes 

all the benefits from the other, while this other 

organism not substantially affected by this interac-

tion; (3) parasitism symbiosis, which the advantage 

that an organism obtains from the other are a 

disadvantage to this other organism. The mathe-

matical model adaptation for these symbioses is 

explained in the following subsections. 
 

Mutualism Phase 
 

The relationship in the mutualism phase is charac-

terized by the benefits of both sides. One such case is 

the relationship between bees and flowers. The 

following is the mathematical formulation of this 

phase: 

newSoli = currentSoli + rand(0,1) * (bestSol – 

mutualSolij * BF1) (8) 

newSolj = currentSolj + rand(0,1) * (bestSol – 

mutualSolij * BF2)  (9) 
 

Here currentSoli and currentSolj are two current 

virtual organisms involved in mutualism; bestSol is 

the current best virtual organism; rand(0,1) repre-

sents the uniform random value between 0 to 1; 

mutualSolij models the mutualism interaction of 

current virtual organisms; newSoli and newSolj are 

the updated virtual organisms following the inter-

action; BF1 and BF2 represent two random values of 

either 0 or 1 illustrating the level of benefit each 

virtual organism has. The following formulation is 

used to calculate mutualSolij. 
 

mutualSolij = (currentSoli + currentSolj) / 2  (10) 

 

Commensalism Phase 
 

In the commensalism phase, one virtual organism 

establishes a relationship in which it is the sole 

beneficiary, such as, a relationship between sharks 

and remora fish. The following is a mathematical 

formulation for this phase: 

newSoli = currentSoli + rand(–1,1) * (bestSol – 

currentSolj) (11) 

where rand(–1,1) represents the uniform random 

value between –1 to 1. 

 

Parasitism Phase 
 

The relationship in the parasitism phase is denoted 

by being harmful to one side and beneficial for the 

other. To illustrate, the plasmodium parasite uses 

the anopheles mosquito to transfer itself from one 

human to another. The harmed side of this relation-
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ship will probably perish, whereas the beneficiary 

will become fitter. The following is a mathematical 

formulation for this phase. 
 

parasiteSoli =  F * currentSoli + (1 – F) * [rand(0,1) * 

(ub – lb)] (12) 
 

Here parasiteSoli is the artificial parasite engaged 

with currentSoli, and it threatens the existence of 

currentSolj; F and (1–F) are the binary random 

matrix and its inverse, respectively; ub and lb are 

the upper and lower bound of the searching area. 

 

Cross-validation for Partitioning the Training 

Data Set 
 

For machine learning technique, establishing a good 

prediction model is critical and requires a proper 

training and test process. To start off with, a data set 

is utilized to build a prediction model in the training 

phase. The trained model is further used to validate 

a new and unseen data set. Nevertheless, if the 

entire data set is used for training, there is a 

possibility of an „overfitting‟ phenomenon to actually 

occur. In this circumstance, the trained model fits 

the data set very well, but, it performs poorly for a 

new and unseen data set. To prevent the overfitting 

problem, dividing the training set into two subsets 

has become a common practice nowadays. The large 

portion of the training set is categorized as the 

„training subset‟ and the small portion of the training 

set is labelled as the „validation subset‟. The larger 

subset is used for training the model while the 

smaller subset is employed to validate the model 

built. 
 

To eliminate the randomness in partitioning the 

training set, a k-fold cross-validation technique is 

proposed in this study [21]. During this procedure, k-

fold cross-validation creates non-overlapping k 

subsets from training set. Since k is a variable 

parameter, any adequate number will work. This 

study sets the value of k to be 5. Hence, the data is 

split up into five random equal size groups, with 4 

subsets are employed as training subsets and one as 

a validation subset. A total of (k-1) subsets are 

employed for training the model, while the remain-

ing k-th subset is employed for the validating the 

training process. Since the procedure is based on 

cross-validation, it is repeated k times to ensure that 

every subset is used at least once as the validation 

subset. 

 

Integrating the Metaheuristic in Model 

Selection for LSSVR 

 

In this step, a hybrid system is proposed so called the 

symbiotic organisms search-least squares support 

vector regression (SOS–LSSVR) that combines the 

two different techniques of SOS and LSSVR. As 

mentioned earlier, the LSSVR acts as a predictor to 

build the accurate input-output relationship of the 

data set; and the SOS works to optimize the LSSVR 

procedure of SOS–LSSVR is shown in Figure 1. 

 
k-fold Cross-validation

Initial 
Hyperparameters

LSSVR Training

Objective Function 
Evaluation 
(AvgMSE)

Training Set

Test Set

Training Subset

Validation Subset

Data subset fold i-th ,

LSSVR Predicting

Prediction Results

Stopping 
Criteria

SOS Optimizer

No

Optimized 
Hyperparameters

Yes

Model Selection

,

Training 
subset

Validation 
subset

Fold 1
Fold 2
Fold 3
Fold 4
Fold 5

 

Figure 1. SOS–LSSVR Framework 

 

The SOS was allowed to identify the optimal LSSVR 

parameters, and accordingly the predictive model 

sets were constructed in the training process. As 

mentioned previously, the training data set consists 

of two parts, the „training subset‟ and the „validation 

subset‟. The objective of this division is to avoid the 

chance of overfitting throughout the training proce-

dure. The study chose the k-fold cross-validation 

process to avoid bias throughout the sample par-

titioning procedure. A supervised learning procedure 

of the LSSVR is utilized to train the model on the 

training subset to find the best fit of the  and  of 

the LSSVR hyper-parameter of the model. 

  

Afterward, the fitted model is used to predict the 

target output from the validation subset. It is worth 

noting that the validation subset offers an unbiased 

assessment of a model fit on the training subset, and 

it also tunes the hyper-parameters of the model. 

Mean squared error (AvgMSE) is employed to 

observe the average prediction error from the 

validation subset. 
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where yj and yj’ are the j-th actual and predicted 

values, respectively; n represents the total number of 

validation samples; and k represents the total 

number of training simulations through k-fold cross-

validation. 

 

The optimization process of the parameter selection 

of LSSVR is simulated by SOS. The SOS search 
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process begins with a random initial population of 

hyper-parameters. Five sets of learning and 

validation subsets are employed for every iteration to 

carry our parameter search simulations. It follows 

the partitioning through the 5-fold cross-validation 

method. The average MSE value of the five 

validation subsets represents the objective value of 

the search process. The best parameter is the 

parameter set generating the minimum average 

MSE on validation subsets during the course of ten 

rounds of training simulation. 

 

Following the identification of the best parameter set 

in the training process, the test set is used to assess 

the trained LSSVR model. In this proposed 

framework, the capacity of LSSVR in dealing with 

curve fitting and learning is combined with the 

capacity of SOS for optimization the two LSSVR 

parameters ( and ), resulting on reduction of 

prediction errors. 

 

System Applications 
 

Description of Data Set 

 

The historical data set for experiment was obtained 

from previous literature [22]. The data set has a total 

of 38 records of concrete mix proportion and was 

used to examine the behavior of concrete mixture 

with strength at seven days. Every data set has five 

input variables and one output variable, including 

cement, fine aggregate (FA), coarse aggregate (CA), 

water to cement ratio (W/C), 7-day strength test 

result (fc7), and the 28-day strength test result (fc28), 

respectively. The characteristics of the variables of 

each data set can be seen in Table 1.  

 
Table 1. Statistical Description of Concrete Mix Proportion 

Variables Unit Min Max Mean 
Standard 

deviation 

X1: Cement kg/m3 270.00 517.00 378.58 61.13 

X2: FA kg/m3 468.00 900.00 688.34 131.04 

X3: CA kg/m3 900.00 1300.00 1050.50 115.27 

X4: W/C - 0.42 0.70 0.55 0.08 

X5: fc7 MPa 13.90 41.90 21.92 6.14 

Y: fc28 MPa 21.83 50.50 31.47 6.49 

 

Machine Learning Models for Comparison 

 

In order to compare the SOS–LSSVR model, this 

research applies three widely used machine learning 

models as follows: 

 

Standard SVR Model 

 

This SVR model used in this study is a traditional 

SVR model named ɛ–SVR [23]. One can simply 

determine the parameters‟ value according to some 

experimental rules, and the standard SVR model 

does the learning process by using all the training 

set. The standard SVR model performs the learning 

process by employing all the training sets. The 

values of parameters can be determined by some 

experimental rules. As suggested by Chang and Lin 

[23], the following are the values of parameters used 

in this study: C = 1 and  = 0.2, 

 

Standard LSSVR Model 

 

LSSVR are recognized as least squares versions of 

the standard SVR model. Rather than solving 

convex quadratic programming problem for classical 

SVR, LSSVR uses a set of linear equation to come to 

a solution. As suggested by Suykens and Vandewalle 

[8], the following are the values of parameters used 

in this study:  = 1 and  = 1, 

 

Levenberg-Marquardt Backpropagation 

Neural Network (LM–BPNN) Model 

 

BPNN is introduced as a variant of neural network 

(NN). It is characterized by the fact that computation 

of the gradient of error function proceed backwards 

through the network. To minimize the error, the 

procedure is repeated during learning, and the 

weights are adjusted by the back propagation of 

error. Levenberg-Marquardt optimization is followed 

to update bias and weight values in LM-BPNN. The 

following are the values of parameters used in this 

study: minimum performance gradient = 1E–07, 

initial  = 0.001,  decrease factor = 0.1,  increase 

factor = 0.1, maximum  = 1E+10. 

 

Model Evaluation Methods 
 

Four different performance metrics are employed for 

evaluating the predictive methods, namely coeffi-

cient correlation (R), root mean square error 

(RMSE), mean absolute percentage error (MAPE), 

and mean average error (MAE). They are applied on 

the predicted output results of the test data set. The 

following equations express the performance metrics: 
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where yi and yi’ are the i-th forecasted and actual 

values respectively, and n is the total number of 

prediction samples. 
 
The best model outcome is indicated by the highest R 
value and the lowest MAE, MAPE, and RMSE 
values. 
 
The Process of Training and Model Selection 

 
For construction and validation of the prediction 
models, the entire data set of 38 samples is divided 
into training set (80%) and test set (20%) randomly. 
Thus, the number of samples in the training and test 
sets are 30 and 8, respectively. Furthermore, the 
training set is additionally divided into training and 
validation sets to improve the performance of the 
trained model. It is essential to prevent imbalance 
and non-uniformity of either of subsets to avoid over-
fitting of the trained LSSVR. Hence, the integration 
of integrating the 5-fold cross validation method as a 
sampling technique contributes to the more balanced 
partitioning process between the training and 
validation subset. 
 
The search space of the two tuning hyper-para-
meters,  and , varies from 1E–10 to 1E+10. The 
initial numbers of organisms and SOS iterations are 
both set to 50 for searching the global optimum 
region. SOS carries out a search strategy by govern-
ing iteratively a large number of organisms through 
symbioses-inspired relationship operators to a pro-
mising candidate region in the search space. SOS 
can effectively automate the model selection process 
in comparison to the trial-and-error based on user's 
prior knowledge. 
 

SOS-LSSVR simulates five rounds of training and 

validation subsets for each iteration. The average 

MSE value of the validation subset of each fold is 

stored as the objective value. The historical records 

of the model selection process are given in Figure 2a. 

The beginning of the objective value of this training 

process is an initial validation MSE value and, 

subsequently, it decreases iteratively to converge 

with a lower validation MSE value as shown in 

Figure 2b. The final set of parameters that produces 

the lowest MSE value on validation subsets are 

5.2531E+09 for and 9.9283E+04 for . 

 
Prediction Results and Comparison 

 
The training process is carried out for every machine 
learning model in this study. A test set is applied to 
each trained model as it is necessary to evaluate the 
training of all developed models. In Figure 3, the 
training and test results of the SOS-LSSVR 
prediction model are shown when the final set of 
hyper-parameters is used. Table 2 shows the full 
prediction results for machine learning models. 

 
Figure 2. The Process of Model Selection and Training 

Process of SOS–LSSVR 

 

 
 

Figure 3. Obtained Training and Test Results of the 

Proposed SOS-LSSVR Prediction Model 

 

The study applied four model performance metrics 

on the prediction results of every machine learning 

model. The linear association strength between 

actual and predicted output values is demonstrated 

by the R. The difference between actual and 

predicted output values is quantified by the RMSE. 

The average magnitude of errors between actual and 

predicted output values is calculated by the MAE, 

while the direction of errors is disregarded. The 

absolute errors are determined by the MAPE.  

Nevertheless, unlike in the case of the MAE, the size 

and unit of actual and predicted output values do not 

affect the MAPE. The error performance of every 

machine learning model on the test set is shown in 

Table 3. 

 

The results showed that the construction of an 

optimized predictive model is facilitated more 

efficiently with the SOS-LSSVR model than with the 

default LSSVR model. SOS-LSSVR improves the 

performance metrics of MAPE, MAE, RMSE, and R 

by 3.41%, 1.08 MPa, 1.79 MPa, and 0.0575 by 

implementing the self-optimized framework, in 

comparison to the original LSSVR test results. 

Moreover, SOS-LSSVR also outperformed in every 

performance metrics SVR and LM-BPNN, other 

machine learning models. This detailed evaluation 

confirmed on the basis of laboratory test records the 

capacity of SOS and LSSVR to model the accurate 

compressive strength. 
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Table 3. Comparative Prediction Results on Test Set. 

Methods 

Test set 

R 
RMSE 

(MPa) 

MAE 

(MPa) 

MAPE 

(%) 

SVR 0.9281 5.60 4.15 13.88 

LSSVR 0.9117 3.95 3.07 10.17 

LM-BPNN 0.9468 2.90 2.49 8.19 

SOS-LSSVR 0.9692 2.16 1.99 6.76 

 

The testing results were compared with those 

reported in the relevant literature to additionally 

validate the modeling performance of the proposed 

system. The deviation between actual and predicted 

output values between Rafi and Nasir‟s work [22] 

and the proposed system are shown in Figure 4. The 

comparison revealed that out of total 38 samples, 

SOS-LSSVR achieved a lower prediction deviation in 

26 samples. Furthermore, the average prediction 

deviation of SOS-LSSVR is much lower (1.03 MPa) 

in comparison to those of Rafi and Nasir (1.30 MPa). 
 

 
Figure 4. Deviation between Actual and Predicted Output 

Values from Rafi and Nasir [22] and SOS-LSSVR 
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Table 2. Prediction Results for Training and Test Set 

Data 
division 

 

Case 
number 

 

X1: 
Cement 
(kg/m3) 

 

X2:  
FA 

(kg/m3) 
 

X3:  
CA 

(kg/m3) 
 

X4: 
W/C 

 

X5:  
fc7 (MPa) 

 

Y: Actual 
fc28 (MPa) 

 

 
 

Y': Predicted fc28 (MPa) 

Rafi and 
Nasir [22] 

Present Study 

SVR LSSVR 
LM-

BPNN 
SOS-

LSSVR 

Training 

1 400 600 1200 0.45 24.5 34.01 
 

34.00 30.23 33.29 34.04 33.93 
2 390 588 1170 0.5 22.5 32.50 

 
31.23 30.24 32.55 32.72 32.02 

3 380 570 1140 0.55 21.6 32.50 
 

29.98 30.34 32.15 32.35 31.11 
4 370 555 1110 0.6 21.5 32.30 

 
29.84 30.48 31.88 32.73 30.91 

5 360 540 1080 0.65 21.1 30.50 
 

29.28 30.60 31.57 32.70 30.44 
7 325 650 1300 0.45 20.3 29.21 

 
28.17 29.31 30.65 30.69 29.62 

8 320 640 1280 0.5 20 28.90 
 

27.76 29.37 29.65 29.24 29.15 
9 315 630 1260 0.55 18.5 27.70 

 
25.68 29.39 28.77 27.76 27.62 

10 310 620 1240 0.6 17.6 25.90 
 

24.43 29.46 28.15 27.83 26.62 
12 300 600 1200 0.7 14.6 23.80 

 
20.26 29.57 28.06 24.89 23.56 

14 504 504 1008 0.5 29.9 39.41 
 

41.50 31.84 36.80 37.78 39.56 
15 491 491 982 0.55 28.3 37.50 

 
39.28 31.88 36.66 36.94 38.00 

16 479 479 958 0.6 26.7 36.10 
 

37.06 31.90 35.66 36.06 36.42 
17 468 468 936 0.65 25.8 35.21 

 
35.81 31.93 34.80 35.66 35.45 

18 457 547 914 0.7 25.7 34.61 
 

35.67 31.80 34.22 33.72 34.92 
20 385 767 1056 0.48 14.44 23.07 

 
22.67 29.57 26.42 24.14 25.09 

21 356 797 1057 0.52 15.08 24.85 
 

23.67 29.46 27.12 24.85 25.34 
22 396 744 1056 0.48 15.72 25.58 

 
24.66 29.74 26.90 25.48 26.28 

23 396 744 1057 0.48 16.12 26.85 
 

25.29 29.77 26.99 25.95 26.63 
24 365 775 1056 0.52 16.94 25.98 

 
26.59 29.66 27.32 27.03 27.05 

25 356 825 1021 0.52 17.13 28.01 
 

26.89 29.62 28.47 27.85 27.29 
26 396 776 985 0.48 17.66 28.58 

 
27.72 29.99 28.40 29.26 28.31 

28 365 808 1023 0.52 19.57 29.78 
 

30.72 29.84 29.53 30.19 29.48 
29 402 780 985 0.46 19.86 27.69 

 
31.18 30.11 29.77 31.64 30.38 

32 380 790 1021 0.5 20.41 32.56 
 

32.02 29.98 29.68 31.25 30.41 
34 320 860 900 0.6 33 41.40 

 
40.80 30.83 38.20 41.27 41.51 

35 380 810 900 0.5 41.9 50.50 
 

51.80 31.55 43.24 50.36 50.17 
36 270 900 900 0.7 20.2 27.80 

 
27.15 29.95 30.65 27.91 29.39 

37 320 860 900 0.6 25.2 35.10 
 

33.88 30.36 34.88 34.93 34.56 
38 380 810 900 0.5 34.5 46.90 

 
46.38 31.15 42.39 46.85 43.58 

Test 

6 350 525 1050 0.7 20.4 30.30 
 

28.31 30.70 31.79 32.79 29.70 

11 305 610 1220 0.65 17.3 24.50 
 

24.01 29.57 27.78 28.17 26.16 

13 517 517 1034 0.45 31.01 44.01 
 

43.03 31.75 35.65 38.23 40.69 

19 370 781 1055 0.5 13.9 21.83 
 

21.82 29.46 26.42 23.61 24.46 

27 402 780 1023 0.46 19.23 28.56 
 

30.17 29.97 28.93 30.00 29.61 

30 440 740 1021 0.42 19.86 27.69 
 

31.18 30.23 31.13 30.21 30.51 

31 396 776 1021 0.48 20.41 32.56 
 

32.02 30.06 29.56 31.17 30.56 

33 270 900 900 0.7 24.7 31.60 
 

30.54 30.20 31.57 30.77 33.40 
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Conclusion 
 

In this study, a new metaheuristic-based machine 

learning system called SOS-LSSVR was proposed to 

accurately estimate the compressive strength con-

sidering the concrete properties and the early age-

test result. To investigate the performance of the 

proposed SOS-LSSVR system, three machine learn-

ing techniques were employed for benchmarking 

purpose. The laboratory test of 38 samples obtained 

from the past literature served as the experimental 

data set. The data set was divided into training and 

test sets and was used for building and validating 

the prediction model. Subsequently, the training set 

was divided into training subset and validation 

subset generated by 5-fold cross-validation to avoid 

the overfitting problem. This study used four per-

formance metrics (R, RMSE, MAE, and MAE) to 

further compare the proposed SOS-LSSVR for the 

overall performance outcome of the applied pre-

dictive techniques. According to the results, the 

proposed SOS-LSSVR has the highest accuracy for 

all mentioned performance metrics. 

  

This study presents a significant contribution to 

address the modelling of concrete behavior consider-

ing the mixture properties and early-age test result. 

The SOS-SVR helps the concrete designers and the 

users in decision-making processes on the basis of 

early strength test results as it predicts the concrete 

behavior accurately. As demonstrated by the ana-

lytical results, SOS-LSSVR is the most reliable 

model for predicting accurately behavior of concrete 

mix proportion at an early-age of strength. 
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