

89

Jurnal Teknik Industri, Vol. 20, No. 2, December 2018: 80-94 DOI: 10.9744/jti.20.2.89-94

ISSN 1411-2485 print / ISSN 2087-7439 online

A Hybrid Greedy Algorithm and Simulated Annealing for Single
Container Loading Problem: A Case Study

I Gede Agus Widyadana1*, Audrey Tedja Widjaja2, Kun Jen Wang 2

Abstract: A single container loading problem is a problem to effectively load boxes in a three-
dimensional container. There are many researchers in this problem try to find the best solution to
solve the problem with feasible computation time and to develop some models to solve real case
problem. Heuristics are the most method used to solve this problem since the problem is an NP-
hard. In this paper, we introduce a hybrid greedy algorithm and simulate annealing algorithm to
solve a real container loading problem in one flexible packaging company in Indonesia. Validation
is used to show that the method can be applied practically. We use seven real cases to check the
validity and performance of the model. The proposed method outperformed the solution

developed by the company in all seven cases with feasible computational time.

Keywords: Single container loading problem, greedy algorithm, simulated annealing.

Introduction

Container loading problems sometimes are called the
packing problem, have been explored by many
researchers since it plays important roles in logistics.

There are some container loading problems have been
explored to deal with problems in practice since there

are many constraints should be considered such as

constraint related with a container, item, cargo,
positioning, and load (Bortfeldt and Wascher [1]). One
type of container loading problem is a single container
loading problem. The single container routing

problem is a packing problem where a set of boxes are
arranged to be put in a three-dimensional container
with objectives to maximize space utilization. Araya
and Riff [2] used beam search strategy to solve a

single container outing problem and claimed their
method outperform some preceding methods such as
Zhu and Lim [3], Zhu et al. [4], Goncalves and
Resende [5] and Fanslau and Bortfeldt [6].

There are some variations of a single container

loading problem. Lim et al. [7] developed a heuristic

model to solve a single container loading problem with

axle weight constraints that are applied in the

California Vehicle Code (CVC). Wang et al. [8] deve-

loped a single container loading problem by

consideringing shipment priority that is common in a

real situation. The research focus on a single con-

tainer loading problem is not only about problem

variations but also methods to solve the problem.

1 Faculty of Industrial Technology, Department of Industrial
Engineering, Petra Christian University, Jl. Siwalankerto 121-131
Surabaya 60238, Indonesia.
2 School of Management, Industrial Management Department,
National Taiwan University of Science and Technology, 43, Sec.4,

Keelung Road, Taipei 106, Taiwan, ROC

Email: gede@petra.ac.id, kjwang@mail.ntust.edu.tw

* Corresponding author

some researchers try to find the best solution with

Container loading problems are generally modeled as

a mathematical program such as a mixed integer

linear programming (MILP) formulation proposed by

Chen et al. [9]. However, the MILP is efficient only for

small problems. Huang et al. [10] proposed an

effective heuristic method to solve 3D container

loading problem for solving the formulation developed

by Chen et al. [9]. There is feasible computation time.

Huang and He [11] used a heuristic caving degree

approach to solve a single container loading problem.

Zhu and Lim [3] solved a single container loading pro-

blem by modifying a greedy algorithm. A heuristic

method to solve a single container loading problem

was developed by Araya and Riff [2] and they called

the method as VCS. Most research used a heuristic

approach to solve a single container loading problem

and no one used a metaheuristic method. However,

some metaheuristic methods are used to solve

container loading problem such as Tabu Search (Liu

et al. [122]). In this paper, we try to develop a hybrid

heuristic and metaheuristic method to solve a single

container loading problem and apply the method to

one flexible packaging company in Indonesia. The

hybrid method is applied to get efficient computation

time and effective result. This paper is presented in

four sections. The first section present background of

the paper, the second section show model and solution

development, section 3 shows the application of the

solution to a real case on a company and the last

section give the conclusion of this research.

Methods

Mathematical Model

Referring to Chen et al. [9] and Huang et al. [10] the

model studied in this paper can be stated as follows:

n : Total boxes to be loaded

Widyadana et al. / Hybrid Greedy Algorithm and Simulated Annealing / JTI, Vol. 20, No. 2, December 2018, pp. 89-94

90

N

(X,Y,Z)

:

:

A set, 𝑁 = {1,2, … , 𝑛}
Length, width, and height of a

container

M : max {𝑥̅, 𝑦̅, 𝑧̅}
(𝑝𝑖 , 𝑞𝑖 , 𝑟𝑖) : Length, width and height

of box 𝑖, respectively

(𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) : coordinates of the left-front-

bottom corner of box 𝑖
(𝑙𝑥𝑖 , 𝑙𝑦𝑖 , 𝑙𝑧𝑖) : binary variables showing

whether the length of box 𝑖 is

parallel to the 𝑥-axis, 𝑦-axis or 𝑧-

axis.

(𝑤𝑥𝑖 , 𝑤𝑦𝑖 , 𝑤𝑧𝑖) : binary variables showing

whether the width of box 𝑖 is

parallel to the x-axis, y-axis or z-

axis.
(ℎ𝑥𝑖 , ℎ𝑦𝑖 , ℎ𝑧𝑖) : binary variables showing

whether the height of box 𝑖 is

parallel to the x-axis, y-axis or z-

axis.

(𝛼𝑖𝑗 , 𝛽𝑖𝑗 , 𝛿𝑖𝑗) : binary variables showing the

relative positions of box i and

box j, such as:

(𝛼𝑖𝑗 , 𝛽𝑖𝑗 , 𝛿𝑖𝑗) = (0,0,1) if box 𝑖 is

on the left-hand side of box 𝑗;

(𝛼𝑖𝑗 , 𝛽𝑖𝑗 , 𝛿𝑖𝑗) = (0,1,0) or

(𝛼𝑖𝑗 , 𝛽𝑖𝑗 , 𝛿𝑖𝑗) = (1,0,0)

 if box 𝑖 is behind box 𝑗;

(𝛼𝑖𝑗 , 𝛽𝑖𝑗 , 𝛿𝑖𝑗) = (0,1,1) if box 𝑖 is

in front of box 𝑗;

(𝛼𝑖𝑗 , 𝛽𝑖𝑗 , 𝛿𝑖𝑗) = (1,0,1) if box 𝑖 is

below of box 𝑗;

(𝛼𝑖𝑗 , 𝛽𝑖𝑗 , 𝛿𝑖𝑗) = (1,1,0) if box 𝑖 is

above of box 𝑗;

The Mixed Integer Linear Programming (MILP) from

Huang et al. [9] is:

The fitness function is minimizing container length to

pack all the boxes.

𝑀𝑖𝑛 (𝑋 − 𝑥𝑛) ∗ (𝑌 − 𝑦𝑛) (1)

In the first constraints, all boxes can’t overlap.

𝑥𝑖 + 𝑝𝑖𝑙𝑥𝑖 + 𝑞𝑖𝑤𝑥𝑖 + 𝑟𝑖ℎ𝑥𝑖 ≤ 𝑥𝑗 + 𝑀(1 + 𝛼𝑖𝑗 + 𝛽𝑖𝑗 −

𝛿𝑖𝑗), ∀𝑖, 𝑗 ∈ 𝑁, 𝑖 < 𝑗 (2)

𝑥𝑗 + 𝑝𝑗𝑙𝑥𝑗 + 𝑞𝑗𝑤𝑥𝑗 + 𝑟𝑗ℎ𝑥𝑗 ≤ 𝑥𝑖 + 𝑀(1 + 𝛼𝑖𝑗 − 𝛽𝑖𝑗 +

𝛿𝑖𝑗), ∀𝑖, 𝑗 ∈ 𝑁, 𝑖 < 𝑗 (3)

𝑦𝑖 + 𝑝𝑖𝑙𝑦𝑖 + 𝑞𝑖𝑤𝑦𝑖 + 𝑟𝑖ℎ𝑦𝑖 ≤ 𝑦𝑗 + 𝑀(1 − 𝛼𝑖𝑗 + 𝛽𝑖𝑗 +

𝛿𝑖𝑗), ∀𝑖, 𝑗 ∈ 𝑁, 𝑖 < 𝑗 (4)

𝑦𝑗 + 𝑝𝑗𝑙𝑦𝑗 + 𝑞𝑗𝑤𝑦𝑗 + 𝑟𝑗ℎ𝑦𝑗 ≤ 𝑦𝑖 + 𝑀(2 + 𝛼𝑖𝑗 − 𝛽𝑖𝑗 −

𝛿𝑖𝑗), ∀𝑖, 𝑗 ∈ 𝑁, 𝑖 < 𝑗 (5)

𝑧𝑖 + 𝑝𝑖𝑙𝑧𝑖 + 𝑞𝑖𝑤𝑧𝑖 + 𝑟𝑖ℎ𝑧𝑖 ≤ 𝑧𝑗 + 𝑀(2 − 𝛼𝑖𝑗 + 𝛽𝑖𝑗 −

𝛿𝑖𝑗), ∀𝑖, 𝑗 ∈ 𝑁, 𝑖 < 𝑗 (6)

𝑧𝑗 + 𝑝𝑗𝑙𝑧𝑗 + 𝑞𝑗𝑤𝑧𝑗 + 𝑟𝑗ℎ𝑧𝑗 ≤ 𝑧𝑖 + 𝑀(2 − 𝛼𝑖𝑗 − 𝛽𝑖𝑗 +

𝛿𝑖𝑗), ∀𝑖, 𝑗 ∈ 𝑁, 𝑖 < 𝑗 (7)

1 ≤ 𝛼𝑖𝑗 + 𝛽𝑖𝑗 + 𝛿𝑖𝑗 ≤ 2, ∀𝑖, 𝑗 ∈ 𝑁, 𝑖 < 𝑗 (8)

For the second constraint, all boxes can be put in a

container.

𝑥𝑖 + 𝑝𝑖𝑙𝑥𝑖 + 𝑞𝑖𝑤𝑥𝑖 + 𝑟𝑖ℎ𝑥𝑖 ≤ 𝑥̅, ∀𝑖 ∈ 𝑁 (9)

𝑦𝑖 + 𝑝𝑖𝑙𝑦𝑖 + 𝑞𝑖𝑤𝑦𝑖 + 𝑟𝑖ℎ𝑦𝑖 ≤ 𝑦̅, ∀𝑖 ∈ 𝑁 (10)

𝑧𝑖 + 𝑝𝑖𝑙𝑧𝑖 + 𝑞𝑖𝑤𝑧𝑖 + 𝑟𝑖ℎ𝑧𝑖 ≤ 𝑧,̅ ∀𝑖 ∈ 𝑁 (11)

In the third constraint, the length, wide and high of

box i only parallel with one axis x, y, and z.

𝑙𝑥𝑖 + 𝑙𝑦𝑖 + 𝑙𝑧𝑖 = 1, ∀𝑖 ∈ 𝑁 (12)

𝑤𝑥𝑖 + 𝑤𝑦𝑖 + 𝑤𝑧𝑖 = 1, ∀𝑖 ∈ 𝑁 (13)

ℎ𝑥𝑖 + ℎ𝑦𝑖 + ℎ𝑧𝑖 = 1, ∀𝑖 ∈ 𝑁 (14)

𝑙𝑥𝑖 + 𝑤𝑥𝑖 + ℎ𝑥𝑖 = 1, ∀𝑖 ∈ 𝑁 (15)

𝑙𝑦𝑖 + 𝑤𝑦𝑖 + ℎ𝑦𝑖 = 1, ∀𝑖 ∈ 𝑁 (16)

𝑙𝑧𝑖 + 𝑤𝑧𝑖 + ℎ𝑧𝑖 = 1, ∀𝑖 ∈ 𝑁 (17)

where:

𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 ≥ 0 (18)

0 < 𝑥 ≤ 𝑥̅ (19)

0 < 𝑦 ≤ 𝑦̅ (20)

0 < 𝑧 ≤ 𝑧̅ (21)

Greedy Algorithm

The model is an NP-hard model; therefore Greedy

Algorithm and Simulated Annealing are used to solve

the model. In the first step, we group pallets with the

same size to set the height of stacks are not more than

the height of a container. We use a greedy algorithm

to solve the first step as follows:

1. Sort boxes from the largest size

2. Choose a box with the largest size, put it in the

first level, and add one box with the same size and

put it above the first box.

3. Check the total height, if the total height is less

than the container height than choose one box

with the same height and put it on the next level.

4. Continue step 3 until no boxes can be put above

other boxes.

5. Find a new box with the largest size and continue

with step 1.

6. Choose one box with the same size and less height

and goes to step two.

7. Continue steps one to six until all boxes have

been stacked.

Simulated Annealing

Simulated Annealing (SA) algorithm used in this pro-

blem is a simple SA algorithm as shown in Figure 1.

Encoding Method

Encoding method represents the solution to the
problem. The solutions are coded into row strings
where the first row represents the loading sequence
into a container and the second row represents the
position of the boxes and represented by a binary

Widyadana et al. / Hybrid Greedy Algorithm and Simulated Annealing / JTI, Vol. 20, No. 2, December 2018, pp. 89-94

 91

Figure 1. The simulated annealing algorithm

2 4 10 7 1 3 9 6 8 5

0 1 1 1 1 0 0 1 1 0

Figure 2. A sample of solution

number. An example of the strings is shown in Figure

2. Figure 2 shows the first box loaded is box number

2, the second box is box 4 and so on. In the second row

shows the rotation of the box where 1 represent the

length of a box follows 𝑥-axis and 1 if the length of the

box follows 𝑦-axis.

Fitness Function

A fitness function is a criterion that must be

optimized. In this paper, we try to minimize the area

of the unoccupied container. The fitness function is

equal to the total wide of a container minus the total

area of the boxes loaded in the container. There is a

possibility that the solution is not feasible since the

total width or the total length of loaded boxes are

bigger than the container’s width and length. When a

feasible solution cannot be found then we set the

fitness function as a big number.

Generation Mechanism of Neighbourhood

Solution

Generation mechanism of neighbourhood solution is

a mechanism to generate a new solution in each itera-

tion. The generation mechanism in this paper is as

follows:

1. Choose one position randomly and insert to any

new position randomly

2. Check feasibility of the solution, when the solution

is not feasible to change the position from 0 to 1 or

from 1 to 0.

3. Try step 2 until a feasible solution is found. When

a feasible solution still cannot be found, set fitness

function with a big value.

Acceptance Criteria for the Neighbourhood

Solution

The following criterion is used to evaluate whether a

neighbourhood solution is accepted as a new solution

or not.

∆= 𝑆 − 𝑆∗ (22)

where S is a new solution generated by neighborhood

scheme and S is the old solution before neighborhood

scheme is employed. When ∆ is negative then the new

solution is better than the old one, but when ∆ is

positive, there is a possibility for the new solution to

be accepted with certain probability. The acceptance

probability can be represented as Eq. 23.

𝑝 = 𝑒
(

∆

𝑇𝑖
)
 (23)

where: 𝑇𝑖 = temperature at iteration-𝑖

The next step is generating a random number 𝑝𝑚

where 0 < 𝑝𝑚 < 1. When 𝑝𝑚 is less than 𝑝 then a

new solution is accepted, otherwise the new solution

is rejected.

Temperature updating scheme

The temperature updating scheme used in this paper

is the commonly geometric updating scheme as

shown in Eq. 24.

𝑇𝑖+1 = 𝑘 × 𝑇𝑖 (24)

where 𝑘 is the rate parameter in terms of initial

temperature.

Widyadana et al. / Hybrid Greedy Algorithm and Simulated Annealing / JTI, Vol. 20, No. 2, December 2018, pp. 89-94

92

Table 1. Data of case 1

Pallet

group

Pallet

number

Pallet size (mm) Box

height
(mm)

1 9 880 1150 160 1030
1 15 880 1150 160 1070

2 10 880 1150 160 1030
2 16 880 1150 160 1070

3 11 880 1150 160 1030
3 17 880 1150 160 1070

4 12 880 1150 160 1030
4 18 880 1150 160 1070

5 13 880 1150 160 1030

5 19 880 1150 160 1070
6 14 880 1150 160 1070

6 20 880 1150 160 1070
7 21 880 1150 160 1070

7 22 880 1150 160 1070
8 1 780 1150 160 1030

8 3 780 1150 160 1070
9 2 780 1150 160 1030

9 4 780 1150 160 1070
10 5 780 1150 160 1030

10 7 780 1150 160 1070
11 6 780 1150 160 1030

11 8 780 1150 160 1070
12 23 680 1150 160 1070

12 24 680 1150 160 1070

Stopping Criteria

The simulated annealing algorithm is stopped when

the temperature (𝑇) is less than a specific temperatu-

re defines in advanced.

Results and Discussions

The model is used to solve a problem at one flexible
packaging company in Indonesia. There are seven
cases are used to verify and validate the model. The
simplest case is case 1 and the most complicated case

is case 7, as shown in Table 1 and 2. Table 1 and are
the result of the Greedy Algorithm. For example in
Table 2 pallet number 28 is stacked above pallet
number 27 and both pallets becomes one group pallet.

Pallet number 15 cannot be stacked above pallet 14,
since the total height is more than the container
height. One pallet can be stacked with other pallet
and become one group pallet if they have the same

length and width.

The good solution of simulated annealing is deter-

mined by right parameters setting which is consist of

initial temperature, stopping temperature, k, and the

number of replication. The program is run under

Macro software in OS Windows 8.1 64-bit with

processor Intel(R)Core(TM) i5-4590 CPU @3.30GHz

and RAM 4,00 GB. We use four parameters set as

shown in Table 3. The result of the four parameters

set is shown in Table 4.

Table 2. Data of case 7

Pallet

group

Pallet

number

Pallet size (mm) Box height

(mm)

1 14 1620 1120 240 1250

2 15 1620 1120 240 1250

3 27 1260 1320 170 800

3 28 1260 1320 170 800

4 31 1240 1320 170 800

4 32 1240 1320 170 800

5 33 990 1320 170 800

5 34 990 1320 170 800

6 16 1090 1120 170 1180

6 19 1090 1120 170 675

7 17 1090 1120 170 1180

8 18 1090 1020 170 1180

9 1 1020 1020 140 1080

9 2 1020 1020 140 1080

10 3 1020 1020 140 1080

10 4 1020 1020 140 1080

11 5 1020 1020 140 1080

11 6 1020 1020 140 1080

12 7 1020 1020 140 1080

12 10 1020 1020 140 1036

13 8 1020 1020 140 821

13 11 1020 1020 140 1036

14 9 1020 1020 140 821

14 12 1020 1020 140 1036

15 13 1020 1020 140 1036

16 20 1390 690 140 770

16 21 1390 690 140 770

17 22 1390 690 140 770

17 23 1390 690 140 770

18 24 1370 690 140 770

18 25 1370 690 140 770

19 26 1370 690 140 770

20 29 1260 690 170 800

20 30 1260 690 170 800

Table 4 shows the best solution in case 1 to 6 for the
four parameters set are the same and parameters set
4 giving the best solution for case 7. Running time for

parameters set 1 and 3 significantly faster than

parameters set 2 and 4. Parameters set 1 result in
convergence solutions in 6 cases, parameters set 2 in
2 cases and parameters set 3 and 4 in 7 cases.

Therefore, we choose parameters set 3 since the para-

meters set is the best for running time and conver-

gence. Even though the solution quality is less than

solution quality or parameters set 4, the difference is

not significant. The solution for seven cases for every

temperature is shown in Figure 3.

We validate the model result with company’s loading

method and the unused area is shown in Table 5.

Table 5 shows that our method has bigger unused

area compare with the company’s method for all

cases. Since in average palette size is 1 m2, then we

cannot add more pallet for cases 2, 3, 5, and 6. Using

our method, we can add more pallet for cases 1, 4, and

7.

Widyadana et al. / Hybrid Greedy Algorithm and Simulated Annealing / JTI, Vol. 20, No. 2, December 2018, pp. 89-94

 93

Table 3. Parameters of simulated annealing

 1 2 3 4

Initial temperature 0.11 0.11 0.11 0.11

Stopping temperature 0.0013 0.0013 0.00085 0.00085
𝑘 0.9 0.95 0.9 0.95

Number of replication 30 30 30 30

Table 4. Parameters set solution

Parameters

set

Quality of

solution

Running

time
Convergence Total

1 6 7 6 19

2 6 0 5 11

3 6 7 7 20

4 7 0 7 14

Table 5. Comparison of company’s calculation and the

research method

Case
Unused area (m2)

Company’s method Our method

1 0,184 1,978

2 0,322 0,552

3 0,3795 0,759

4 1,242 2,553

5 0,253 0,322

6 0,736 0,736

7 0,989 1,196

Conclusion

In this research, a hybrid greedy algorithm and a

simulated annealing is developed to solve a single

container loading problem in one company. Since

some parameters are crucial to get efficient and

effective solutions, we try four parameter sets and

find the best parameters set. The method is validated

using seven different cases form the company and the

result is compared with the company’s solution. The

proposed methods outperform company’s solution in

seven cases with feasible computation time.

The paper can be extended by considering some real

constraints that have not been considered in this

paper. For example, some buyer asks the weight of

the container should be not too much difference

between the front, middle and back area.

References

1. Bortfeldt, A., and Wascher, G. Constraints in

Container Loading – A State-of-the-art Review,

European Journal of Operational Research, 229,

2013, pp. 1-20.

2. Araya I., and Riff M.C., A Beam Search Approach

to the Container Loading Problem, Computers &

Operations Research, 43, 2014, pp. 100-107.

3. Zhu, W., Lim, A., A New Iterative-doubling

Greedy-look Ahead Algorithm for the Single

Container Loading Problem, European Journal

Figure 3. Average fitness value for parameter set 3

Widyadana et al. / Hybrid Greedy Algorithm and Simulated Annealing / JTI, Vol. 20, No. 2, December 2018, pp. 89-94

94

of Operational Research, 222 (3), 2012, pp.408–

417.

4. Zhu, W., Hon, W., Lim, A., and Weng, Y., The Six

Elements to Block-building Approaches for the

Single Container Loading Problem, Applied

Intelligence, 37(3), 2012, pp. 1–15.
5. Gonçalves, J., and Resende, M., A Parallel Multi-

population Genetic Algorithm for a Constrained
Two-dimensional Orthogonal Packing Problem,
Journal of Combinatorial Optimization, 22(2),
2011, pp. 180–201.

6. Fanslau, T., and Bortfeldt, A., A Tree Search
Algorithm for Solving the Container Loading
Problem, INFORMS Journal on Computing,
22(2), 2010, pp.22–35.

7. Lim, A., Ma, H., Qiu, C., and Zhu, W., The Single
Container Loading Problem with Axle Weight
Constraints, International Journal of Production
Economics, 144, 2013, pp. 358-369.

8. Wang, N., Lim, A., and Zhu, W., A Multi-round

Partial Beam Search Approach for the Single
Container Loading Problem with Shipment
Priority, International Journal of Production
Economics, 145, 2013, pp. 531-540.

9. Chen, C., Lee, S., and Shen, Q. An Analytical

Model for the Container Loading Problem, Euro-

pean Journal of Operational Research, 80(1),

1995, pp. 68-76.

10. Huang Y.H., Hwang F.J. and Lu H.C., An

Effective Placement Method for the Single Con-

tainer Loading Problem, Computers & Industrial

Engineering, 97, 2016, pp. 212-221.

11. Huang, W., and He, K., A Caving Degree Appro-

ach for the Single Container Loading, European

Journal of Operational Research, 196, 2009, pp.

93-101.

12. Liu, J., Yue, Y., Donng, Z., Maple C., and Keech

M., A Novel Hybrid Tabu Search to Container

Loading, 38, 2011, pp. 797-807.

